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Synthetic biology analogy: bio-bots
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From idea to implementation
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Why is synthetic biology different / promising? What’s different than existing genetic engineering?

Alteration of genetic code in sophisticated fashion

Harnessing cells as factories, robots, devices, etc..

Computer analogy?


Programmed pathogen sense-and-destroy

Bacillus subtilis Vibrio fischeri

e\

Pseudomonas aeruginosa

30C6HSL

CAHSL /
30C12HSL

Sentinel/killer cells



Cancer therapy: decipher the transcriptome

» Problem: Most existing cancer therapies
are not specific enough and result in
significant collateral damage.

» Goal: Develop an adaptable, effective
and highly specific cancer therapy that
evaluates internal cell state using
combinatorial logic

« Approach:
(1) a “smart virus” infects a cell,
(2) computes whether the transcriptome
1s indicative of cancer, and if so,
(3) decides to destroy the cell

« Main novelty: A therapeutic agent that
carries an RNA1 based logic circuit that
can respond to a target gene expression
profile

» Note: Also, non-clinical applications

http://content.hccfl.edu/facultyinfo/ckasper/humanreproduction.html



Hela cell classifier
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Using microRNA profiles (with Benenson lab)
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High expression in HelLa: miR-1H, miR-2H, miR-3H
Low expression in HelLa: miR-4L, miR-5L, miR-6L



Fluorescence output in 3 cell lines
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Experimental legend

* O1: Just low targets . RQ- dust'transc[iptional repression
* 02: No targets N C1 Full circuit .‘
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population of
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embryonic
stem cell

e Fundamental question in tissue engineering:

Can we create and maintain large scale spatially defined
functional tissues?
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O
Artificial tissue homeostasis for [3 cells

» 7.8% of the US population has diabetes

* In Diabetes Type | (10% of diabetics), auto-immune
response (slowly) kills insulin-producing pancreatic [3
cells.

* Goal:
Maintain population level of B cells using

auto-regulated differentiation of ES cells
that counter=batances auto-immune attacks.
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Complex system with 22 components
Design with ‘known’ modules!
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Motivation: Glandular organs

Approach: Implement artificial quorum sensing for programmed differentiation

MIP: Mouse Insulin Promoter



ACP and AAS as previously explained

Luxr activates Gata4 or Sox17,  drives cell to an endoderm stage, 

Once endoderm is formed, alpha-fetoprotein is expressed.  Alphafetoprotein simultaneously activates three genes: dsred, so we know we have endoderm, and Pdx1 and Ngn3

Alpha-fetoprotein (AFP) controls expression of Pdx1 and Ngn3 -> beta cell differentiation



Type 1: autoimmune diease, body attacks beta cells and renders them dead or nonfunctional

Type II:  get later in life, linked to obesity and other things. Helpful where insulin is mutated, insulin receptors are mutated, or insulin not produced in enough quantity.



Working on a more complex system, which will allow for control and constant production of beta cells,

Also, using ES cells Possible that the immune system would not recognize and attack these cells



This system might be useful for helping with type 1 type 2 diabetes, where the human immune response kills off the beta cells, thus can't produce insulin anymore

Thus, this system would allow us to transplant embryonic stem cells, let them proliferate to be able to produce beta cells, reach a critical density, and then differentiate into beta cells to remedy / compensate for the natural deficiency


Bio-program: encoding system function

Modulle: population_control()
{
iIT (state == uncommitted)
send(AHL)

IT ((state == uncommitted) &&
(Tat > thresh.) &&
(AHL > threshy.))

growth_arrest()
}

Module: run_oscillator()
{
1T ((state == uncommitted) &&
(Tat < thresh.) &&
(oscillator > thresh))
state = committed

1T (state == committed)
send(Tat)
+

Module: differentiate()
{
input: DOX
1T (DOX)
express(Endo-CFR)
1T (Endoderm)
express(Islet-CFR)
1T (Islet)
express(GFP)
+




Modular gene network representation
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Insulin-production assay with C-peptide antibodies
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Outlook for applications

Bioenergy production
* biodiesel
* hydrogen
* methane

Microbial biochemical
synthesis

e artemisinin .

* other pharmaceuticals

C Environmental applications
e environmental remediation
* toxin sensing
* explosive sensing

Biomedical applications

* cancer therapeutic agents

e artificial tissue homeostasis

e programmed tissue regeneration
e artificial immune system
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